Clinical Vignette

Sporadic Burkitt’s Lymphoma

Mikhail Kovshilovsky, Jennifer Goldstein, M.D., Robert Deiss, M.D., Kuo-Chiang Lian, M.D.

Introduction

Burkitt’s lymphoma is a highly aggressive B-cell neoplasm associated with translocation of the c-MYC oncogene. It is a non-Hodgkin’s type lymphoma which consists of endemic, sporadic, and immunodeficiency-associated subtypes. This rare condition occurs most commonly among young male patients. Burkitt’s lymphoma is diagnosed by characteristic histologic appearance and responds well to chemotherapy.1, 2

Case Presentation

A 20-year-old Iranian man without significant past medical history presented to the emergency department complaining of two and a half weeks of intermittent burning and sharp abdominal pain. Two weeks prior

at another emergency department he was diagnosed with gastritis and discharged home. Subsequent to this his primary doctor diagnosed him with colitis and prescribed trimethoprim/sulfamethoxazole and dicyclomine. However, the patient reported no relief of symptoms from this treatment.

One week prior to presentation the pain became more diffuse. The pain also lasted longer and worsened with food. He reported nausea and one episode of self-induced vomiting, which provided some relief. He had been constipated for the week prior, having alternating watery or hard bowel movements every 2-3 days. There was also no relief of pain with bowel movements. No blood was seen in emesis or stool. The pain acutely worsened the night prior to presentation, prompting the present visit to the emergency department. Review of systems was otherwise unremarkable; notably, the
patient did not have any fevers, chills, night sweats, weight loss, oral ulcers, cough, shortness of breath, diarrhea, dysuria, muscle pain, weakness, or easy bruising/bleeding.

Physical examination at the time of admission was noteworthy for a soft, diffusely tender abdomen without rebound or guarding. Bowel sounds were normoactive and splenomegaly was present. A single tender 1cm left inguinal lymph node was noted to be matted and mobile. Routine complete blood count, chemistry panel, lipase, coagulation times and urinalysis were all within normal limits. Human Immunodeficiency Virus (HIV) antibody test was negative and serology for Epstein-Barr Virus (EBV) revealed prior exposure and immunity. A contrast-enhanced CT of the abdomen and pelvis revealed a 9x5cm cecal mass, omental carcinomatosis, multiple enlarged abdominal and portocaval lymph nodes, and a hyperdense lesion in the liver (Figure 1). A biopsy of the mass revealed a monotypic B-cell malignancy and a characteristic starry sky appearance consistent with Burkitt’s lymphoma. Immunohistochemistry showed a high fraction of cells staining for Ki-67 and FISH revealed c-MYC positivity (Figure 2).

Further CT imaging obtained for staging revealed intrathoracic lymphadenopathy, and a lumbar puncture did not reveal any Central Nervous System (CNS) disease. Treatment was initiated with CODOX-M (intravenous cyclophosphamide, vincristine, doxorubicin, methotrexate with cytarabine intrathecal prophylaxis) alternating with IVAC (intravenous ifosfamide, etoposide, and cytarabine) chemotherapy. The patient subsequently responded well to several cycles of chemotherapy and exhibited a complete response with no residual clinical and radiologic evidence of disease after four cycles of chemotherapy (Figure 3).

Discussion

Burkitt’s lymphoma was first described by surgeon Denis Parsons Burkitt when he was working in central Africa in the 1950’s. He noticed children with masses involving the face, upper and lower jaws, and the abdomen.³ While the malignancy was initially thought to be a
sarcoma, it was later recognized to be a lymphoma. In 1961, Burkitt shared samples with Michael Anthony Epstein, an experimental pathologist. Subsequently, Epstein and his colleagues described the involvement of Epstein-Barr virus (EBV) in the pathogenesis of Burkitt’s lymphoma. It has since been discovered that there is a translocation of the c-MYC gene leading to its over-expression and cellular proliferation.

There are three variants of Burkitt’s lymphoma: endemic, sporadic, and immunodeficiency-associated. While these are all histologically identical, they have different clinical features. The incidence of Burkitt’s lymphoma is estimated to be 50 times greater in Africa than in the United States. The endemic variant is most prevalent in equatorial Africa and produces disease at a younger age, typically between 4-7 years of age. Epstein Barr Virus is found in all cases of endemic variant and the disease usually involves the jaw, other facial bones, and the kidneys. On the other hand, the sporadic variant is more common in the U.S. and Western Europe. The endemic and sporadic variants are most common among children, with males being affected more than females by 3-4:1. With about 2-3 cases per million per year, the sporadic variant mostly affects extranodal sites, with the abdomen being most commonly affected as in our case above. The immunodeficiency type is often discovered in the setting of HIV. However, it is frequently seen in patients with CD4 counts greater than 200 cells/μL and interestingly, the rate observed in HIV patients has not decreased with Highly Active Antiretroviral Therapy (HAART).

In sporadic cases patients will often present with rapidly growing masses. This results in abdominal pain, nausea and vomiting, bowel obstruction, GI bleeding, and syndromes mimicking appendicitis or intussusception. If the mass is large enough, patients may also present with tumor lysis syndrome. Lab studies may reveal elevated lactate dehydrogenase and uric acid.

The pathogenesis of Burkitt’s lymphoma is related to the translocation of the c-MYC gene on chromosome 8 with one of the Ig genes on
chromosomes 14, 2, or 22. This leads to over-expression of the c-MYC protein and
dysregulation of the cell cycle and growth,
resulting in a neoplastic counterpart of a subset
of normal activated germinal center B cells.¹

Diagnosis is achieved through pathological
evaluation of the involved tissue. Histology
reveals monomorphic medium-sized cells with
basophilic cytoplasm and high proliferation
rates. Classically, a starry-sky is seen as a result
of scattered macrophages with ingested nuclear
debris with abundant clear cytoplasm amidst a
background of malignant cells.⁷ Alternatively,
the diagnosis can be established through
cytogenetics and verification of the c-MYC
rearrangement.² In children it is important to
consider Wilms tumor and neuroblastoma as
other differential diagnoses. Other neoplasms
that can be difficult to differentiate from
Burkitt’s lymphoma include lymphoblastic
lymphoma, blastic mantle cell lymphoma, and
diffuse large B-cell lymphoma.²

About 70% of patients present with extensive
disease and are at risk of spread to the CNS and
bone marrow.² The CNS is involved in 13-17%
of adult cases and the bone marrow in 30-38%.¹
Therefore, aggressive chemotherapy and CNS
prophylaxis with intrathecal methotrexate is
critical to treatment. The initiation of CODOX-
M/IVAC presented increased survival, with up
to 92% two-year survival for children and
adults.⁸ However, toxicities such as
myelosuppression, mucositis, and neuropathy
may be seen with chemotherapy. Additionally,
with rapid turnover of tumor cells, tumor lysis
syndrome is an important consideration.²

Conclusion
Burkitt’s lymphoma is a highly-aggressive and
rare malignancy accounting for less than 2% of
all Non-Hodgkin’s lymphomas.⁹ The endemic
variant is the most common form in Africa, with
disease usually affecting the facial bones. The
sporadic variant is the most common in the U.S.
and commonly presents with an abdominal
neoplasm involving the ileocecum and
peritoneum.¹,⁷

Given the frequent involvement of the abdomen,
it is not uncommon for patients to present with
symptoms mimicking an acute abdomen. In
cases such as this one, the history and physical may lead to a differential diagnosis other than acute abdomen. With subsequent imaging and biopsy, the diagnosis can be established. This can avoid unnecessary procedures or surgeries and can also expedite the diagnosis and treatment of the underlying disease.

While this is an aggressive tumor, treatment with combination chemotherapy can result in remission and a good overall prognosis.7,10

FIGURE LEGENDS:

Figure 1. Contrast-enhanced CT of the abdomen and pelvis showing 5x9cm cecal mass.

Figure 2: Ki-67 stain of cecal mass biopsy showing high proliferation rate of monomorphic medium sized cells.
Figure 3. Contrast-enhanced CT of the abdomen and pelvis following four cycles of CODOX/M-IVAC chemotherapy demonstrating complete response.

References

Submitted on February 3, 2011